Remote ischaemic conditioning modulates platelet reactivity: the need to optimize the therapy is more important than ever before

Sandrine Lecour

Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Anzio road, 7925 Observatory, Cape Town, South Africa

This editorial refers to ‘Effect of remote ischaemic conditioning on platelet reactivity and endogenous fibrinolysis in ST-elevation myocardial infarction: a substudy of the CONDI-2/ERIC-PPCI randomized controlled trial’ by D.A. Gorog et al., pp. 623–634.

More than 25 years after its discovery in the preclinical setting, remote ischaemic conditioning has shown convincing potential to limit reperfusion injuries in the setting of acute myocardial infarction in both preclinical and small proof of concept clinical studies. Sadly, the clinical translation of this inexpensive and simple therapy, consisting of short and repeated bouts of ischaemia–reperfusion episodes performed remotely to the heart (usually in the limb by inflation/deflation of a blood pressure cuff), has proved to be challenging.

Although the outcome of the largest clinical trial testing the benefit of remote ischaemic conditioning in patients with acute myocardial infarction (CONDI-2/ERIC-PPCI trial) was disappointing, lessons can certainly be learnt from this study. This multicentre, randomized, placebo-controlled clinical trial conducted in Europe (mainly Denmark and UK) included over 5400 patients with acute ST-segment elevation myocardial infarction (STEMI) undergoing percutaneous coronary intervention (PCI). Regrettably, remote ischaemic conditioning, performed during ambulance transfer or at the arrival in hospital, failed to reduce infarct size, to reduce cardiac mortality and to limit rehospitalization for heart failure at 1 year. Multiple explanations for the lack of benefit of remote ischaemic conditioning in this trial have been suggested, including the fact that the patients recruited in this trial already received state-of-the-art management/therapy (with low mortality rate, small infarct size, and small rehospitalization rate even in the control group), thus making it challenging to demonstrate any further benefits from remote ischaemic conditioning in this category of patients. However, this large trial and subsequent sub-studies of the trial bring valuable information and new knowledge that are critical before it can translate to the clinical setting. Indeed, the following five points (see Figure 1) need to be carefully addressed:

(1) Which patient is likely to benefit from remote ischaemic conditioning?

High-risk patients with potentially a larger infarct and a higher probability of major adverse cardiac events, patients from high-income countries living away from a PCI centre or patients from low-to-middle-income countries with no adequate health care system or suboptimal pharmacological and reperfusion therapies, are more likely to benefit from remote ischaemic conditioning. As an example, patients that benefit from optimal therapy will receive the platelet P2Y12-receptor antagonists which have been described to confer cardioprotection via platelet reactivity, as observed with a longer protection with remote ischaemic conditioning may not have a long-lasting effect on thrombosis activity and that chronic, rather than acute, remote ischaemic conditioning may be a more appropriate strategy to limit platelet reactivity in STEMI patients. Unfortunately, this effect was not associated with any benefit for the patient. However, this is not entirely surprising considering the low-risk profile of the patients. This result, however, strengthens the hypothesis that patients with high-risk profile, in particular, patients with high risk of stent thrombosis, may benefit from the modulation of platelet reactivity after remote ischaemic conditioning.

This study strongly suggests that remote ischaemic conditioning has the potential to confer benefits in STEMI patients but it reminds us that optimization of the therapy is critical before it can translate to the clinical setting. Indeed, the following five points (see Figure 1) need to be carefully addressed:

The opinions expressed in this article are not necessarily those of the Editors of Cardiovascular Research or of the European Society of Cardiology.

*Corresponding author. Tel: +27 214066278. E-mail: sandrine.lecour@uct.ac.za

Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2020. For permissions, please email: journals.permissions@oup.com.
Optimizing remote ischemic conditioning (RIC) therapy

- Who may benefit from RIC?
 - High risk versus low risk patients
 - If optimized therapy not available

- Which conditions may affect benefits of RIC
 - Co-morbidities and co-medications may interfere with RIC

- What protocol of RIC should be applied?
 - Number of I/R cycles
 - Duration of each cycle

- Where should RIC be applied?
 - Upper versus lower versus both limbs

- When should RIC be applied?
 - Best timing for RIC
 - Acute versus chronic RIC

Reduced thrombus formation, cardioprotection

Figure 1 Some of the key points that need to be optimized to facilitate clinical translation of RIC in the setting of acute myocardial infarction. RIC, remote ischemic conditioning.

mechanisms similar to remote ischemic conditioning. If remote ischemic conditioning may not add further benefit in patients already treated with P2Y12 receptor antagonists (as was the case in the present study), it may still benefit patients who are not given the opportunity to receive the platelet P2Y12 inhibitors (as is often the case in patients from low- to middle-income countries). Which conditions may affect the benefits of remote ischemic conditioning? Multiple preclinical studies suggest that confounders such as co-morbidities and co-medications may limit the cardioprotective properties of ischemic conditioning but convincing clinical data are still missing.

What protocol of remote ischemic conditioning should be used? Unfortunately, the number of cycles of ischemia–reperfusion and the duration of each cycle to maximize the protection have been poorly studied in both experimental and clinical settings.

Where should remote ischemic conditioning be performed? Most clinical studies have performed the remote ischemic conditioning protocol in the upper limb while experimental studies (in rodents and pigs) have often performed the remote ischemic conditioning protocol in the hindlimb. There is scant information as to whether remote ischemic conditioning may exert better cardioprotective properties if performed in the lower limb, the upper limb or possibly in both limbs at the same time.

When should remote ischemic conditioning be performed? Although the current study did not see any difference between patients who received remote ischemic conditioning during ambulance transfer compared to those who received the therapy at the arrival in hospital, the timing when remote ischemic conditioning needs to be performed to confer maximal protection has hardly been studied in both preclinical and clinical studies.

Although remote ischemic conditioning has the potential benefit to promote cell survival and limit thrombotic activity in STEMI patients, it is unlikely to successfully translate in the clinical setting before the five questions listed above (Who-Which-What-When-Where) have been critically answered and taken into consideration in future clinical studies.

Conflict of interest: none declared.

Funding

The research of S.L. is partly funded by the National Research Foundation, the University of Cape Town, Winetech and the Cancer Association of South Africa.

References

