Standing at the crossroads between new and historically prevalent heart disease: effects of migration and socio-economic factors in the Heart of Soweto cohort study

Simon Stewart1,2, Melinda Carrington1,2, Sandra Pretorius2, Puthuma Methusi2, and Karen Sliwa1,2,3*

1Preventative Cardiology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia; 2Soweto Cardiovascular Research Unit, Chris Hani Baragwanath Hospital, University of the Witwatersrand, Johannesburg, Republic of South Africa; and 3Hatter Cardiovascular Research Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa

Received 10 June 2010; revised 25 September 2010; accepted 13 November 2010; online publish-ahead-of-print 16 December 2010

Aims
Migration, urbanization, and change in socio-economic factors have potentially profound effects on heart disease in low-to-middle income countries.

Methods and results
Chris Hani Baragwanath Hospital in Soweto, South Africa, provides health care to >1 million Africans. We systematically captured data from all de novo presentations of suspected heart disease (focusing on ‘new’ vs. historically prevalent forms) during 2006–2008. There were 3168 female (52 ± 18 years) vs. 2160 male (53 ± 17 years) cases. Overall, 999 (19%) presented with uncomplicated hypertension (n = 988) or type II diabetes, 1862 cases (35%) ‘new’ heart disease (1146 and 581 cases of hypertensive heart failure and coronary artery disease), and 2092 cases (39%) of historically prevalent heart disease (including 724 with primary valve disease and 502 idiopathic dilated cardiomyopathies). Level of education and non-communicable risk factors were important correlates of advanced disease. The rate of historically prevalent cases was higher in those aged 20–49 years (19–60 cases/100 000 population/annum) whilst being higher for “new” heart disease in those aged ≥50 years (155–343 cases/population/annum). Historically prevalent heart disease cases were younger [adjusted odds ratio (OR) 0.98, 95% 0.97–0.99 per year], more likely to be African (OR 4.59, 95% 2.76–7.60) while being less likely to originate from Soweto (OR 0.87, 95% 0.75–1.00) and be female (OR 0.67, 95% 0.49–0.92).

Conclusion
Dynamic socio-economic and lifestyle factors characteristic of epidemiological transition appear to have positioned the urban, mainly African community of Soweto at the crossroads between historically prevalent and ‘new’ forms of heart disease.

Keywords
Africa • Cardiovascular disease • Heart disease • Spectrum of disease • Epidemiological transition

Introduction
Although the burden of cardiovascular disease (CVD) states, such as heart disease, is stabilizing in high-income countries, in low-to-middle-income countries (LMIC) it continues to rise.1 With scarce health-care resources, LMIC are typically ill-equipped to cope with new challenges2 when already over-burdened by illness related to malnourishment and infection.3 There is little scope to tackle new prototypes of heart disease arising from changing risk behaviours due to epidemiological transition.4 Contemporary studies demonstrate high levels of non-communicable antecedents of heart disease (except dyslipidaemia) in Sub-Saharan Africa; particularly urban communities.5–7 Preliminary data from...
the Heart of Soweto Study suggests that epidemiological transition has broadened the spectrum of advanced forms of heart disease in one of Africa’s largest urban concentrations of Africans. We found a high burden of complex cases in young individuals and women (a pattern rarely seen in high-income countries). The contemporary balance between historically prevalent and emergent (new) forms of heart disease in Sub-Saharan Africa is unknown. This tension between the ‘old and the new’ is largely reflected in the balance between communicable vs. non-communicable disease states. Historically, rheumatic heart disease (RHD), the dilated cardiomyopathies (CMO), pulmonary heart disease, arrhythmias, and infectious forms of heart disease are predominant in Sub-Saharan Africa. With high levels of rural migration and extreme poverty counterbalanced by sufficient consumer demand for new, state-of-the-art shopping precincts, Soweto is an ideal community to study epidemiological transition. We postulated that in Soweto (>1 million people of African descent) the balance between largely communicable (historically prevalent) vs. non-communicable (newer) forms of heart disease has irrevocably changed. Specifically, we hypothesized that (i) the burden of new forms of heart disease is equal to historically prevalent forms, (ii) socio-demographic gradients exist in case presentations and, (iii) lifestyle risk factors are both common and contribute to more advanced presentations in those with historically prevalent heart disease.

Methods

Study setting and design
As described previously, the 3500-bed Chris Hani Baragwanath Hospital (case load of >125 000 inpatients per annum) services the tertiary care needs of Soweto and surrounding communities. With no other major facilities and limited private health care, it represents a key barometer of the overall health of Soweto. All cases of suspected heart disease are referred to the Cardiology Unit for advanced diagnostic testing and gold-standard treatments. A prospective clinical registry of all de novo presentations was established in 2006 as part of the Heart of Soweto Study; Sub-Saharan Africa’s largest and most detailed study of advanced forms of heart disease to date.

Participants
During 2006–2008, we captured data on 6006 de novo presentations to the Cardiology Unit. Excluding those 678 cases (11%) found not to have significant disease or risk, the remainder (n = 5328) were referred on the following basis:
- emergency presentation (n = 401, 7.6% of total case-load);
- external referral from local primary care clinics for advanced assessment and definitive treatment (n = 367, 6.8%);
- internal referral of a patient as a current hospital inpatient (n = 1992, 37.4%);
- referral from another outpatient department (n = 2568, 48.2%).

The study was approved by the University of the Witwatersrand Ethics Committee and conforms to the principles outlined in the Declaration of Helsinki.

Study data
A complete list of study data captured by the registry, comprising basic socio-demographic (including self-reported years of education, origin and history of any form of CVD) and advanced clinical profiling, has been described previously. Those of African descent were typically of Zulu or Xhosa origin. Migrants were defined as individuals who were not born in Soweto with a differential of >10 years between calculated age and reported years of living in the area. Anthropometric measurements were available for calculation of body mass index (BMI—kg/m²) in 3844 (72%) ambulatory cases, and renal function assessed in 4348 (82%) cases. Despite echocardiography being performed in every case (according to gold-standard criteria), not all values were quantified (e.g. due to poor visualization); left ventricular ejection fraction (LVEF) was recorded in 4597 cases (86%). Similarly, 12-lead ECG (blinded Minnesota coding) was available in 4782 (90%) cases. We also adhered to the STROBE guidelines for this type of study.

Data classification and analyses
All data and diagnoses were independently reviewed and adjudicated (consensus approach) by K.S. and S.S. using European Society of Cardiology guidelines. For these analyses, we prospectively classified cases into six clinical groups (using the primary diagnosis)—see Table 1.

Table 1

<table>
<thead>
<tr>
<th>Study classification</th>
<th>Primary diagnoses</th>
<th>General characteristics</th>
<th>Communicable component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertension/type II diabetes (without evidence of established heart disease or another form of CVD)</td>
<td>Hypertension</td>
<td>Increasingly prevalent risk factor in urban communities, primary diagnosis only when no evidence of cardiac dysfunction</td>
<td>None/strongly linked to lifestyle risk factors</td>
</tr>
<tr>
<td>Historically prevalent heart disease</td>
<td>RHD and other valve disorders, non-ischaemic CMOs, pericardial disease, and pulmonary heart disease</td>
<td>Low prevalence relative to other LMIC</td>
<td>Streptococcal infection, tuberculosis, other pulmonary infections, and now HIV infection</td>
</tr>
<tr>
<td>New non-communicable heart disease</td>
<td>Hypertensive heart failure (HF) and (atherosclerotic) coronary artery disease (CAD)</td>
<td>Historically, the main (reported) contributors to heart disease in Sub-Saharan Africa</td>
<td>Strongly linked to lifestyle risk factors</td>
</tr>
</tbody>
</table>

Continued
Study data were documented on standardized forms and entered into a database (Microsoft Access) at the Soweto Cardiovascular Research Unit. Data were then verified and transferred to SPSS Statistics 17.0 for independent analyses at Baker IDI. Normally distributed continuous data are presented as the mean ± standard deviation and non-Gaussian distributed variables as the median plus inter-quartile range. Categorical data are presented as percentages with 95% confidence intervals (CIs) presented where appropriate. For patient group comparisons, we initially used χ^2 analysis with calculation of odds ratios (ORs) and 95% CI (where appropriate) for discrete variables, Student’s t-test and analysis of variance for normally distributed continuous variables. Multiple logistic regression analyses (entry model) were performed on demographic and baseline risk factor profile (all variables listed in Table 3) to derive adjusted ORs for the risk of presenting with historically prevalent vs. ‘new’ forms of heart disease. Mantel–Haenszel tests were also performed to examine the interaction between gender, age (age-groups), and type of case presentation. In order to address the third hypothesis amongst those with historically prevalent heart disease, the risk of presenting with more advanced heart disease (as evidenced by secondary valve disease and/or left ventricular systolic dysfunction) was assessed. Rate of case presentations per annum was calculated on an age- and sex-specific basis using contemporary Census data\(^\text{25}\) for the Baragwanath Hospital catchment area. Significance was accepted at the level of 0.05 (two-sided).

Results

Study cohort

Table 2 shows the broad socio-demographic and clinical profile of this cohort comparing men to women (60% of the cohort) and African (87%) vs. other ethnicities. The latter comprised 292 Caucasian (5.5%), 219 Indian (4.1%), and 191 (3.6%) of mixed descent. There were proportionately more African women (54% of total) than men (33%). Although more men smoked tobacco, their mean BMI was markedly lower than women ($P < 0.001$ for both comparisons). Men were also more likely to present with left ventricular systolic dysfunction (OR 1.71, 95% CI 1.50–1.95; $P < 0.001$) but numerically more women ($1418 \ (45\%) \ vs. \ 975 \ (45\%)$) presented with any form of HF. In addition to being collectively younger, the overall risk factor profile of Africans (less family history, less smokers, and lower cholesterol levels) was more favourable than other ethnicities ($P < 0.001$ for all sex-based comparisons).

Figure 1 shows the spectrum of 5328 de novo cases highlighting key differentials according to sex, ethnicity, and level of education in the pre-specified clinical groupings. The two largest groups were historically prevalent heart disease (39% of the total cohort) comprising 60% women and 93% Africans, and ‘new’ forms of heart disease (35%) comprising 56% women and 79% Africans ($P < 0.001$ for both comparisons). A similar proportion of men and women were diagnosed with a non-heart disease form of CVD including 87 cases of stroke/cerebrovascular disease (46 co-morbid cases of stroke were identified) and 57 cases of peripheral arterial disease (28 co-morbid cases). A further 999 cases, predominantly those with uncomplicated hypertension (primary diagnosis with no evidence of end-organ damage, $n = 988$) and 11 cases of type II diabetes ($315 \ co-morbid \ cases—not \ shown$), had a major risk factor without established heart disease. The proportion of cases with < 6 years (low) education ranged from 29% (other forms of CVD) to 48% (‘new’ heart disease).

Historically prevalent vs. ‘new’ forms of heart disease

The proportion of historically prevalent ($1.8 \pm \ 0.9$ diagnoses overall) and new forms of heart disease cases ($2.4 \pm \ 0.8$ diagnoses) was evenly poised. Table 3 demonstrates a number of socio-demographic and modifiable risk factors were potentially important in determining the type of presentation. On an adjusted basis, historically prevalent heart disease cases were more likely to be younger, African and be male. Conversely, they were less likely to originate from Soweto in addition to having a positive family history of CVD, elevated total cholesterol level, hypertension, and/or be obese. We specifically examined age and sex trends according to whether an individual originated from Soweto or had ‘migrated’ to the area in the most prevalent racial group in the cohort—those of African descent ($n = 3308$). As shown in Figure 2 there were marked differences in the pattern of presentation on this basis. Overall, there were more cases of historically prevalent than new heart disease up to 49 years for women and 59 years for men, before this pattern reversed in older age groups. For female Sowetans, new heart disease case presentations continuously increased across all age groups compared with historically prevalent cases.
which peaked in 30–39 year olds and then declined slowly thereafter. Alternatively, for male Sowetans, new heart disease cases peaked between 50–69 years and then decreased thereafter while historically prevalent cases peaked in 50–59 year age group before decreasing. This pattern was very similar for male migrant Africans. For female migrants however, new heart disease cases peaked between 50–69 years and then decreased slowly thereafter. Alternatively, for male Sowetans, new heart disease cases peaked in 30–39 year olds and then declined slowly thereafter while historically prevalent cases peaked in 50–59 year age group before decreasing. This pattern was very similar for male migrant Africans. Although there was no interaction between age, sex, and presentation in ‘migrants’, there was a borderline association in native Sowetans ($P = 0.059$); the probability of a women aged 20–39 years before rising dramatically thereafter to 343 cases/100 000 per annum in the oldest age group. Overall, the estimated rate of case presentation of historically prevalent vs. ‘new’ heart disease in adults living within the hospital’s catchment area was 45 and 42 cases/100 000 per annum, respectively.

Impact of modifiable risk factors in historically prevalent heart disease

Although modifiable/lifestyle risk factors were not abundant in those with historically prevalent heart disease ($n = 2092$), multivariate analyses indicated they may (along with socio-economic factors) still play an important role in determining the acuity of presentation. Secondary valve dysfunction in the setting of a

Table 2 Demographic and clinical presentation ($n = 5328$)

<table>
<thead>
<tr>
<th></th>
<th>All ($n = 5328$)</th>
<th>Men ($n = 2160$)</th>
<th>Women ($n = 3168$)</th>
<th>African ($n = 4626$)</th>
<th>Other ($n = 702$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socio-demographic profile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean age (years)</td>
<td>52.0 ± 17.4</td>
<td>52.8 ± 16.5</td>
<td>51.5 ± 17.9</td>
<td>51.5 ± 17.7</td>
<td>56.7 ± 14.1</td>
</tr>
<tr>
<td>African descent</td>
<td>4626 (87%)</td>
<td>1763 (82%)</td>
<td>2863 (90%)</td>
<td>4626 (100%)</td>
<td>—</td>
</tr>
<tr>
<td>Female</td>
<td>3168 (60%)</td>
<td>—</td>
<td>3168 (100%)</td>
<td>2863 (62%)</td>
<td>305 (43%)</td>
</tr>
<tr>
<td><6 years education</td>
<td>2264 (43%)</td>
<td>933 (43%)</td>
<td>1331 (42%)</td>
<td>2018 (44%)</td>
<td>246 (35%)</td>
</tr>
<tr>
<td>Originally from Soweto</td>
<td>2835 (53%)</td>
<td>1079 (50%)</td>
<td>1756 (55%)</td>
<td>2807 (61%)</td>
<td>28 (4.0%)</td>
</tr>
<tr>
<td>Mean years living in Soweto</td>
<td>39.4 ± 17.9</td>
<td>38.2 ± 17.7</td>
<td>39.2 ± 18.1</td>
<td>38.8 ± 18.0</td>
<td>38.6 ± 15.8</td>
</tr>
<tr>
<td>Risk factor profile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family history of CVD</td>
<td>2157 (41%)</td>
<td>727 (34%)</td>
<td>1430 (45%)</td>
<td>1800 (39%)</td>
<td>357 (51%)</td>
</tr>
<tr>
<td>Total cholesterol (mmol/L)</td>
<td>4.2 ± 1.3</td>
<td>4.1 ± 1.3</td>
<td>4.4 ± 1.3</td>
<td>4.2 ± 1.3</td>
<td>4.8 ± 1.3</td>
</tr>
<tr>
<td>History of smoking (%)</td>
<td>2425 (46%)</td>
<td>1454 (67%)</td>
<td>971 (31%)</td>
<td>2000 (43%)</td>
<td>425 (61%)</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>28.2 ± 7.3</td>
<td>25.7 ± 6.0</td>
<td>29.8 ± 7.6</td>
<td>28.2 ± 7.2</td>
<td>28.0 ± 7.5</td>
</tr>
<tr>
<td>Clinical presentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NYHA II, III, or IV</td>
<td>3645 (68%)</td>
<td>1371 (63%)</td>
<td>2274 (72%)</td>
<td>3214 (69%)</td>
<td>431 (61%)</td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg)</td>
<td>132 ± 27</td>
<td>132 ± 28</td>
<td>133 ± 27</td>
<td>133 ± 27</td>
<td>132 ± 26</td>
</tr>
<tr>
<td>Diastolic blood pressure (mmHg)</td>
<td>76 ± 15</td>
<td>76 ± 16</td>
<td>75 ± 16</td>
<td>76 ± 15</td>
<td>74 ± 14</td>
</tr>
<tr>
<td>Angina pectoris/ chest pain</td>
<td>626 (12%)</td>
<td>241 (11%)</td>
<td>385 (12%)</td>
<td>505 (11%)</td>
<td>121 (17%)</td>
</tr>
<tr>
<td>Peripheral oedema</td>
<td>1702 (32%)</td>
<td>648 (30%)</td>
<td>1054 (33%)</td>
<td>1579 (34%)</td>
<td>123 (18%)</td>
</tr>
<tr>
<td>Mean LVEF (%)</td>
<td>54.4 ± 16.4</td>
<td>51.7 ± 16.7</td>
<td>56.3 ± 15.8</td>
<td>54.2 ± 16.5</td>
<td>55.8 ± 14.7</td>
</tr>
<tr>
<td>LV systolic dysfunction</td>
<td>1189 (26%)</td>
<td>592 (32%)</td>
<td>597 (22%)</td>
<td>1074 (26%)</td>
<td>115 (21%)</td>
</tr>
<tr>
<td>Diastolic dysfunction</td>
<td>759 (17%)</td>
<td>290 (16%)</td>
<td>469 (17%)</td>
<td>676 (16%)</td>
<td>83 (15%)</td>
</tr>
<tr>
<td>Primary diagnosis (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertensive heart failure</td>
<td>1146 (22%)</td>
<td>414 (19)</td>
<td>732 (23)</td>
<td>1050 (23)</td>
<td>96 (14)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>988 (19)</td>
<td>343 (16)</td>
<td>645 (20)</td>
<td>854 (19)</td>
<td>134 (19)</td>
</tr>
<tr>
<td>Valve disease</td>
<td>724 (14)</td>
<td>233 (11)</td>
<td>491 (16)</td>
<td>660 (14)</td>
<td>64 (9.1)</td>
</tr>
<tr>
<td>Coronary artery disease</td>
<td>581 (11)</td>
<td>342 (16)</td>
<td>239 (7.5)</td>
<td>271 (5.9)</td>
<td>310 (44)</td>
</tr>
<tr>
<td>Idiopathic dilated CMO</td>
<td>502 (9.4)</td>
<td>268 (12)</td>
<td>234 (7.4)</td>
<td>470 (10)</td>
<td>32 (4.6)</td>
</tr>
<tr>
<td>RHF/pulmonary hypertension</td>
<td>345 (6.5)</td>
<td>160 (7.4)</td>
<td>185 (5.8)</td>
<td>311 (6.7)</td>
<td>34 (4.8)</td>
</tr>
<tr>
<td>HIV-related heart disease</td>
<td>518 (9.7)</td>
<td>197 (9.1)</td>
<td>321 (10)</td>
<td>500 (11)</td>
<td>18 (2.6)</td>
</tr>
</tbody>
</table>

NYHA, New York Heart Association Class; LVEF, left ventricular ejection fraction; LV, left ventricular; RHF, right heart failure; CMO, cardiomyopathy; Diastolic dysfunction, based on E/A ratio and deceleration time according to generally accepted criteria. 14

Downloaded from http://eurheartj.oxfordjournals.org/ at University of Cape Town Libraries on February 13, 2012
dilated CMO was more common in men (adjusted OR 1.35, 95% CI 1.01–1.79; \(P = 0.041\)), those originating from Soweto (OR 1.34, 95% CI 1.03–1.74; \(P = 0.030\)), those with a smoking history (OR 1.74, 95% CI 1.31–2.29; \(P < 0.001\)), and increased BMI (OR 1.02, 95% CI 1.00–1.04 per kg/m\(^2\); \(P = 0.032\)). Similarly, those presenting with associated LV systolic dysfunction were also more likely to originate from Soweto (adjusted OR 1.49, 95% CI 0.97–2.27; \(P = 0.069\)), have <6 years education (OR 1.57, 95% CI 1.12–2.20; \(P = 0.009\)) and a lower total serum cholesterol level (adjusted OR 0.80, 95% CI 0.70–0.92; \(P = 0.032\)). There was also a gradient in total cholesterol levels according to educational experience; 3.6 ± 1.4, 3.7 ± 1.3, and 4.2 ± 1.5 mmol/L in...
Figure 2 Pattern of ‘new’ and historically prevalent heart disease in Sowetan vs. ‘migrant’ Africans (n = 3308).

Figure 3 Rate of case presentation of historically prevalent vs. new forms of heart disease according to age group in all racial groups (n = 3805).
those with <6, 6–10 years and >10 years education, respectively (P < 0.0001).

Discussion

We present data from Sub-Saharan Africa’s largest and most comprehensive cohort study of advanced forms of heart disease. As a likely barometer for other Sub-Saharan communities in epidemiological transition, the mostly African residents of Soweto are subject to dynamic and complex factors. This includes economic development, erosion of traditional lifestyles, rural migration, and global influences likely to adversely impact the health of vulnerable communities. A growing local appetite for products historically absent from the region (e.g. processed foods) will almost inevitably ‘feed’ new forms of disease. As a consequence of high levels of risk but poor awareness of healthy lifestyle choices, it appears that Soweto already stands at the crossroads between historically prevalent and newer forms of heart disease due to epidemiological transition. In particular, older African women (particularly those originating from Soweto) appear to be the greatest contributors to this phenomenon.

Specifically, we captured clinical data from 5328 de novo cases of hypertension and heart disease (the latter comprising almost 4000 cases). Contrary to contemporary reports, the single most prevalent form of heart disease was hypertensive HF (>1100 cases). When combined with 581 cases of CAD (47% of whom were African), the ratio of these ‘new’ vs. historically prevalent forms of heart disease was almost 1:1 (both numerically and population rate of presentation). Significantly, we also found a large pool of hypertensive cases at high risk of developing advanced heart disease. Ominously, these data suggest that if South Africa continues to improve life expectancy through positive socio-economic changes and tackling of the HIV epidemic, the number of older adults (particularly women) paradoxically affected by non-communicable forms of heart disease will soon surpass the number of relatively younger adults affected by historically more prevalent disease states.

With the notable exception of hospital-based studies focusing on a single condition such as HF, we are unaware of comparable reports from the region. When compared with the population-based studies across the spectrum of CVD, this study highlights a significant gap in our knowledge about advanced forms of heart disease in the region requiring more research capacity as the burden rises. Unfortunately, research funding is almost exclusively directed towards combating communicable disease in Sub-Saharan Africa. There is potential for a rise in heart disease linked directly to HIV and anti-retroviral therapy (including CAD in individuals without significant atherosclerosis and HIV-related CMO). However, the greatest threat appears to emanate from a complex set of socio-economic circumstances and the rise of non-communicable heart disease. In contrast to high-income countries, the most striking features of these data are the relatively young age of affected individuals and the predominance of women. However, there were clearly identifiable and predictable differences in the pattern of clinical presentations according to socio-demographic profile. It is interesting to note the expected pattern of increasing non-communicable heart disease with advancing age overall but with a significant contribution from older African women (most notably Sowetans) and, by weight of numbers, migrants. Significantly, the prevalence of lifestyle risk factors (excepting dyslipidaemia and diabetes) was still relatively high in those with historically prevalent heart disease. As hypothesized, this influenced the acuity of such cases. Although there was a notable difference in the absolute proportion (93 vs. 79%) and adjusted risk of Africans presenting with historically prevalent vs. ‘new’ heart disease, it is important to note that almost 500 individuals of African descent per annum still presented with the latter.

It is important to consider if a predicted rise in non-communicable forms of heart disease is justified. Many studies have now documented a rise in lifestyle risk factors in Sub-Saharan Africa. Consistent with epidemiological transition, urban regions, where traditional lifestyles associated with a near historical absence of atherosclerotic disease, are being replaced by that typically seen in high-income countries (particularly obese women) are affected most. The predominance of uncomplicated hypertension and hypertensive HF confirms bleak predictions of a wave of such cases in urban Sub-Saharan Africa. The estimated rate of case presentations of non-communicable heart disease in the region (by its very nature a very conservative indicator) of 42 cases/100 000 population per annum is not inconsistent with the WHO estimate of an age-adjusted mortality rate of 389 deaths per 100 000 population/annum in South Africa.

These data highlight many complex and challenging health issues for Soweto and beyond. In addition to revisiting strategies to combat ‘old’ problems such as RHD, we need to better understand the nexus between heart disease and HIV infection and likely trends within a population that now has high levels of both underlying infection/inflammation and modifiable risk factors. Fundamentally, these data reconfirm the urgent need to establish cost-effective (region-specific) primary prevention strategies and secondary prevention programmes with early disease detection and chronic disease programmes being an obvious priority. At the same time, there is a need to better understand the underlying dynamics and drivers of epidemiological transition in different communities. Consequently, we are now focusing on the primary care burden and management of heart disease in Soweto and the Heart of Africa Study examining heart disease throughout Sub-Saharan Africa.

This study has a number of limitations. A small proportion of potential cases (<10%) were not captured by our registry without evidence of systematic bias in case selection. Despite the central importance of Baragwanath Hospital to managing advanced forms of heart disease in Soweto, it does not reflect the full spectrum of disease (from minor to fatal events) in the community. Impending results from the Heart of Soweto Primary Care Registry (involving >1000 cases) will be important in this context. Moreover, unlike a recent study in Maputo, Mozambique we did not specifically focus on capturing cerebrovascular disease. Although we systematically applied echocardiography and 12-lead ECG, clinical data were obtained according to the nature of the presentation. We also acknowledge the often arbitrary nature of case classifications given the complexity of case presentations and our decision to designate historically prevalent vs.
new heart disease based on previous reports. Estimate rates of case presentations (like those of the WHO) are complicated by a lack of reliable population data for a dynamic region with large numbers of migrants and itinerant households. By necessity, we also did not collect detailed socio-economic data (e.g. household income). Finally, it is possible that our systematic approach to screening has revealed previously hidden levels of non-communicable heart disease.

Our unique data suggest that Soweto, like other urban regions in Sub-Saharan Africa where modifiable risk factors such as hypertension and obesity are becoming the norm, sits at the crossroads between historically prevalent and ‘new’ forms of heart disease. If current trends continue, it appears inevitable there will be more patients with non-communicable than communicable heart disease in the near future. The worst case scenario is a sustained burden of complex cases involving predominantly young African women in whom modifiable risk factors alter the natural history of already prevalent disease and an ever increasing burden of relatively older cases with advanced forms of non-communicable heart disease. Clearly, specific primary and secondary prevention strategies will need to be developed to facilitate earlier detection and optimal management of such cases within a resource-poor health-care environment. As such, appropriate funding to combat the evolving burden of heart disease in these vulnerable communities is urgently required.

Acknowledgements
The authors wish to thank all the doctors, nurses, and patients that participated in the registry. We acknowledge in particular Elisabeth Tshele, Bridget Phooko, and Louis Kuneka.

Funding
This study was supported by the University of the Witwatersrand and unconditional research grants from Adcock-Ingram; the Medtronic Foundation; BHP Billiton; and Servier. S.S. and M.C. are supported by the National Health and Medical Research Council of Australia.

Conflict of interest
All authors had full access to all the data in the study. The corresponding author had final responsibility for the decision to submit the report for publication. There is no conflict of interest for any of the authors of this manuscript.

References